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Two-dimensional thermal convection in the presence of a strong oblique magnetic
field is studied using an asymptotic expansion in inverse powers of the Chandrasekhar
number. The linear stability problem reveals the existence of two distinct scales in
the vertical structure of the critical eigenfunctions: a small length-scale whose vertical
wavenumber kz is comparable with the large horizontal wavenumber k⊥ selected
at onset, and a large-scale modulation which forms an envelope on the order of
the layer depth d. The small-scale structure in the vertical results from magnetic
alignment that forces fluid motions to be (nearly) parallel to the field lines. For
convective transport in the vertical this constraint must be relaxed. This is achieved
by molecular dissipation which allows weak upward (downward) motions of hot (cold)
fluid elements across the field lines and results in a large-scale vertical modulation
of the magnetic columns. Using the scaling suggested by the linear theory, strongly
nonlinear steady and overstable solutions are constructed. These are characterized by
large departures of the mean temperature profile from the conduction profile. For
overstable rolls two modes of convection are uncovered. The first ‘vertical field’ mode
is characterized by thin thermal boundary layers and a Nusselt number that increases
rapidly with the applied Rayleigh number; this mode is typical of steady convection
as well. The second or ‘horizontal field’ mode is present in overstable convection only
and has broad thermal boundary layers and a Nusselt number that remains small
and approximately independent of the Rayleigh number. At large Rayleigh numbers
this regime is characterized by a piecewise linear temperature profile with a small
isothermal core. The ‘horizontal field’ mode is favoured for substantial inclinations
of the field and sufficiently small ohmic diffusivity. The transition between the two
regimes is typically hysteretic and for fixed inclination and diffusivity may occur
with increasing Rayleigh number. Similar but highly asymmetric states are obtained
for depth-dependent ζ, where ζ is the ratio of ohmic to thermal diffusivity. These
results are obtained from a nonlinear eigenvalue problem for the Nusselt number and
mean temperature profile, and suggest a possible explanation for the sharp boundary
between the umbra and penumbra in sunspots.

1. Introduction
The study of convection in an imposed magnetic field is motivated primarily by

astrophysical applications and in particular by the observations of sunspots (Thomas
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& Weiss 1992). Motivated by this application several authors investigated the sup-
pression of convection by strong magnetic fields. Within linear theory the details of
this process are summarized by Chandrasekhar (1961). Veronis (1959) was the first
to observe that nonlinear convection in a vertical magnetic field will be subcritical if
the magnetic diffusivity is sufficiently small, and consequently that convection could
be present even when no linear instability is predicted. This behaviour was studied
by Weiss (1981a,b) in a series of numerical simulations; some studies of convection
in an imposed horizontal field have also been carried out (Arter 1983; Hughes 1987;
Cattaneo & Hughes 1988; Brownjohn et al. 1995). However, the magnetic field in
sunspots is in general neither vertical nor horizontal, and this fact led Matthews et
al. (1992) to undertake the first nonlinear investigation of convection in an oblique
magnetic field. Although fully compressible this investigation was unable to reach
the parameter values, both in terms of field strengths and Rayleigh number (a non-
dimensional measure of the buoyancy force), characteristic of convection in sunspots.
Even with today’s state-of-the-art computers limitations on memory and computa-
tional speed place substantial restrictions on the accessible parameter range.

In the present paper we bring a new set of tools to bear on this problem. We exploit
an asymptotic procedure first used in convection theory by Blennerhassett & Bassom
(1994) and Bassom & Zhang (1994) to obtain strongly nonlinear solutions valid in
the limit of large magnetic field strengths and substantially supercritical Rayleigh
numbers. We use the term ‘strongly nonlinear’ to distinguish our work from weakly
nonlinear theories in which the mean temperature profile is barely distorted by the
motion. In contrast, the states we compute are characterized by strong, i.e. order one,
distortions. This is accomplished by focusing on the small horizontal spatial scales
and high-frequency oscillations predicted from the linear theory in the strong field
limit, and leads to a reformulation of the problem as a nonlinear eigenvalue problem
for the (time-averaged) Nusselt number (a non-dimensional measure of the vertical
heat transport) and mean temperature profile as a function of the applied Rayleigh
number. The scaling adopted follows that used by Julien, Knobloch & Tobias (1999a)
for a vertically imposed magnetic field (see also Matthews 1999) but because of the
tilt of the field the solution of the problem has more in common with the work of
Julien & Knobloch (1998) on rapidly rotating convection on an f-plane.

In the present work we do not include the effects of compressibility although we do
consider the effects of depth-dependent diffusivities as measured by ζ(z), the ratio of
ohmic to thermal diffusivity. This effect is of particular importance in sunspots since
ζ > 1 favours steady overturning convection while ζ < 1 favours overstable convec-
tion. Indeed the passage from ζ > 1 to ζ < 1 with increasing height has been linked to
the formation of umbral dots (Weiss et al. 1990). We focus on two-dimensional struc-
tures in the form of tilted rolls, and discuss in detail the results for two orientations. In
the so-called perpendicular case the roll axes are perpendicular to the plane contain-
ing the field and gravity; in the parallel case the roll axes are parallel to this plane (see
figure 1). As is well known when the imposed field is horizontal these two configura-
tions behave quite differently. This is because in the parallel case an interchange mode
is available which avoids distortion of the field while allowing convection to proceed.
In contrast, in the perpendicular case all motions distort the field and the onset of
convection is delayed. When the field is inclined the distinction between these two con-
figurations is less dramatic, since the magnetic field is sheared even in the parallel case.

In both cases we find two different ‘modes’ of overstable convection depending on
parameters. The ‘vertical field’ mode is characterized by thin thermal boundary layers
and a Nusselt number that increases rapidly with the applied Rayleigh number Ra
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Figure 1. Sketch of (a) perpendicular rolls and (b) parallel rolls, as defined in the text.
The imposed magnetic field makes an angle ϑ with respect to the vertical.

while the ‘horizontal field’ mode has broad thermal boundary layers and a Nusselt
number that remains small and almost independent of Ra. At large Ra this regime
is characterized by a piecewise linear temperature profile with a small isothermal
core. The ‘horizontal field’ mode is favoured for substantial inclinations of the field
and sufficiently small ohmic diffusivity. For typical inclinations and diffusivities a
hysteretic transition from the ‘vertical’ to the ‘horizontal’ regime takes place as Ra
increases. No comparable transition was found for steady convection.

We provide a physical explanation for these results, and compute self-consistently
for each of these cases the associated horizontal mean flows, mean magnetic fields
and heat fluxes, as a function of the field inclination. The results suggest a tentative
explanation for the sharp transition between the umbra and penumbra in a sunspot:
the increase in the tilt of the magnetic field with radial distance results in an abrupt
change in the mode of convection, from a three-dimensional mode in the umbra to
a two-dimensional mode consisting of parallel rolls in the penumbra. The resulting
picture of sunspot convection has much in common with that recently put forward
by Rucklidge, Schmidt & Weiss (1995) and is consistent with available observations.

This paper is organized as follows. In § 2 we introduce the governing equations.
Section 3 contains a detailed description of the linear stability properties of the
conduction state for finite but large values of the Chandrasekhar number (a non-
dimensional measure of the magnetic field strength) and includes a comparison with
the results obtained from an asymptotic expansion. Having validated the asymptotic
expansion against the linear theory we proceed in § 4 to describe the asymptotic
expansion that leads to a reduced description of the dynamics in the strong magnetic
field limit; the equations that result are closely related to those obtained via the
mean-field approximation (Van der Borght & Murphy 1973) but are asymptotically
exact. In § 5 we specialize this description to two-dimensional rolls and derive a
nonlinear eigenvalue problem describing their vertical structure. Section 6 contains
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the results obtained by solving this problem in a variety of cases, focusing primarily
on perpendicular and parallel rolls; these results are used in § 7 to compute self-
consistently the mean horizontal flows, magnetic fields and heat fluxes associated
with these solutions. The possible consequences for the structure of sunspots are
discussed in § 8.

2. Governing equations
The dimensionless equations describing Boussinesq magnetoconvection in a plane

horizontal layer are

1

σ

(
∂

∂t
+ v · ∇

)
v = −∇π+ ζQB · ∇B + RaT ẑ + ∇2v, (2.1)

(
∂

∂t
+ v · ∇

)
T = ∇2T , (2.2)(

∂

∂t
+ v · ∇

)
B = B · ∇v − ∇× (ζ∇× B), (2.3)

∇ · v = 0, ∇ · B = 0, (2.4)

where v = (u, v, w) is the velocity field in Cartesian coordinates (x, y, z) with z vertically
upwards. The symbol T denotes the temperature, while π is the total (thermal and
magnetic) pressure. The velocity field is written in the form v = U + u, where U is
the mean flow and u the convective flow. Likewise, the dimensionless magnetic field
is assumed to be the superposition B = r̂ + B + b of an imposed oblique field of unit
strength, a mean field B, and a three-dimensional field b both due to the presence
of convection. The oblique field is denoted by r̂ = (sin ϑ, 0, cos ϑ), where ϑ denotes
the angle with respect to the vertical in the (x, z)-plane. The equations have been
non-dimensionalized with respect to the thermal diffusion time in the vertical. The
resulting dimensionless parameters

Q =
B2

0d
2

µ0ρην
, Ra =

gα∆Td3

νκ
, σ =

ν

κ
, ζ =

η

κ
, (2.5)

are the Chandrasekhar, Rayleigh, and thermal and magnetic Prandtl numbers, re-
spectively.† In the following ζ is allowed to vary with the depth while σ will be kept
constant.

We employ a streamfunction formulation and write

u(x, y, z, t) = ∇× φ(x, y, z, t)ẑ + ∇× ∇× ψ(x, y, z, t)ẑ,

b(x, y, z, t) = ∇× A(x, y, z, t)ẑ + ∇× ∇× B(x, y, z, t)ẑ.

}
(2.6)

Thus

u =

 ∂yφ + ∂x∂zψ
−∂xφ + ∂y∂zψ

− ∇2⊥ψ,

 , b =

 ∂yA + ∂x∂zB
−∂xA + ∂y∂zB

− ∇2⊥B,

 , (2.7)

† The non-dimensional parameters are defined in terms of the depth d of the layer, the imposed
temperature difference ∆T between the bottom and top boundaries, and the magnitude B0 of the
imposed magnetic field. The remaining parameters are g (the local acceleration due to gravity),
α (the coefficient of thermal expansion of the fluid), ν (the kinematic viscosity), κ (the thermal
diffusivity), and η (the magnetic diffusivity). Finally, µ0 is the magnetic permeability.
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ω =

(
∂x∂zφ − ∇2∂yψ
∂y∂zφ + ∇2∂xψ

− ∇2⊥φ

)
, j =

(
∂x∂zA − ∇2∂yB
∂y∂zA + ∇2∂xB

− ∇2⊥A

)
, (2.8)

where ω ≡ ∇×u and j ≡ ∇×b are, respectively, the vorticity and the current density.
Partials with subscripts denote differentiation with respect to that variable, ∂x ≡ ∂/∂x,
and ∇2⊥ ≡ ∂2

xx + ∂2
yy is the horizontal Laplacian.

We find, a posteriori, that U and B are sufficiently small that they do not enter the
leading-order dynamics, but may be determined self-consistently from the resulting
Reynolds and magnetic stresses (see § 7). Consequently, we set for now U = B = 0;
the four scalar fields φ, ψ, A, B and the temperature T then satisfy the equations

1

σ
(∂t∇2

⊥φ+Nφ) = ζQ(r̂ · ∇∇2
⊥A+Mφ) + ∇2∇2

⊥φ, (2.9)

1

σ
(∂t∇2∇2

⊥ψ +Nψ) = −Ra∇2
⊥T + ζQ(r̂ · ∇∇2∇2

⊥B +Mψ) + ∇4∇2
⊥ψ, (2.10)

∂tT +NT = ∇2T , (2.11)

∂t∇2
⊥A+MA = r̂ · ∇∇2

⊥φ+ ζ∇2∇2
⊥A+ (∂zζ)∂z∇2

⊥A, (2.12)

∂t∇2
⊥B +MB = (r̂ · ∇)∇2

⊥ψ + ζ∇2∇2
⊥B. (2.13)

The nonlinear terms Nφ, Mφ, Nψ , NT , Mψ , MA and MB are written down in full in
the Appendix.

These equations are solved for a fluid confined between impenetrable boundaries
at fixed temperatures,

T |z=0 = 1, T |z=1 = 0, (2.14)

that are either stress-free or no-slip. The simplest magnetic boundary conditions,
employed by Matthews et al. (1992), require that the field be tilted by the same
angle ϑ to the vertical everywhere on the top and bottom boundaries. However, in
the following we find that the detailed nature of the boundary conditions becomes
unimportant in the large-Q limit; the solutions for different magnetic or velocity
boundary conditions differ in thin passive boundary layers at top and bottom only.
Periodic boundary conditions in the horizontal are used throughout.

3. Linear theory
Throughout this paper we shall distinguish two main types of configuration:

convection in which the roll axes are perpendicular to the (x, z)-plane containing
gravity and the magnetic field, and the parallel case in which they lie in the planes
y = const (see figure 1). We describe the roll orientation in terms of the wave vector
k0 = (k0x, k0y, k0z) of the rolls, where k0x = k0⊥ cos χ, k0y = k0⊥ sin χ, and k0⊥ denotes
the horizontal wavenumber. Thus the perpendicular case corresponds to χ = 0 while
the parallel case corresponds to χ = π/2; intermediate orientations correspond to
0 < χ < π/2. The vertical component k0z is necessary in order to describe rolls
aligned with the imposed magnetic field (see below).

In this section we briefly summarize the linear stability properties of the conduction
solution v = 0, T = 1 − z, B = r̂ in the two cases χ = 0, χ = π/2 obtained with
stress-free boundaries and fixed field inclination. Figure 2(a, b) shows the critical
Rayleigh number Rac and the corresponding wavenumber kc (i.e. the value of k0⊥
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Figure 2. The critical Rayleigh number Rac and wavenumber kc for onset of (a) steady, and
(b) oscillatory perpendicular rolls (χ = 0) as functions of Q for ϑ = 0◦, 15◦, 30◦, 45◦, 60◦, 75◦
and ζ = 0.1. The bottom panels show the approach of, respectively, Rac(Q) and ωc(Q) to their
asymptotic values at large Q. (c) The exact vertical eigenfunction for steady onset when χ = 0,
ϑ = π/12 and Q = 6.8261 × 109; for these parameters Ra(s)

c = 6.7485 × 1010, k(s)
c = 74.6398. The

eigenfunction is complex with solid (dashed) lines denoting its real (imaginary) parts, and reveals
the presence of two scales in the vertical. The dotted lines show the slowly varying envelope.

that minimizes Ra) as a function of Q for steady and oscillatory convection for
several different values of the tilt angle ϑ when χ = 0. As expected, the critical
Rayleigh number increases rapidly with increasing Q, i.e. the magnetic field has a
stabilizing effect. This effect depends only weakly on the tilt angle but decreases as
this angle increases. The third panel in figure 2(a) shows the approach of Rac(Q) to its
asymptotic behaviour, and confirms that in this regime Rac = O(Q) for the tilt angles
considered. This is so also for oscillatory onset. Somewhat unexpected, however, is
the behaviour of the associated kc for large Q. One expects that kc = O(Q1/6) but
this behaviour is found only for tilt angles that are small enough; for tilt angles
exceeding approximately 30◦ an O(1) wavenumber is selected instead. These results
reflect the dominant component of the field: for steady convection in an imposed
vertical field, kc ∼ ( 1

2
π4Q)1/6 while for an imposed horizontal field, kc ∼ π3/2Q−1/4.

In both cases Rac ∼ π2Q. These two types of behaviour indicate that as the tilt
angle increases the system undergoes a transition in which its behaviour changes
from one in which the vertical field dominates to one in which the horizontal field
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dominates. We shall see that such a transition occurs in the nonlinear regime as well.
In contrast, for parallel rolls kc ∼ ( 1

2
π4Q cos2 ϑ)1/6, Rac ∼ π2 cos2 ϑQ, provided that

Q cos2 ϑ� 1, and the transition to the horizontal field behaviour occurs only for tilt
angles ϑ = π/2− O(Q−1/2). Thus in the parallel case large wavenumbers are selected
for almost all tilt angles, but this is so only in a limited range of tilt angles in the
perpendicular case. In fact the parallel case is special only when ϑ ∼ π/2, i.e. when
the imposed field is essentially horizontal. In this case the magnetic field has no effect
on the onset of convection and the selected wavenumber is therefore O(1). In the
limit of large Q the above results hold for no-slip boundaries as well.

In the following we find, following Julien et al. (1999a), that for O(1) tilt angles an
analysis with O(Q1/4) horizontal wavenumbers describes correctly not only the linear
and nonlinear properties of solutions with these wavenumbers but also those with the
O(Q1/6) wavenumbers selected by linear theory as described above. In particular, the
zero wavenumber limit of the results given below yields the correct Rayleigh number
and frequency that results from using an O(Q1/6) scaling. In addition the analysis with
O(Q1/4) wavenumbers captures the transition from overstable convection preferred
at small ζ to steady overturning convection preferred for ζ > 1. As a result we
can determine fully nonlinear steady states from the equations describing oscillatory
convection by simply setting the oscillation frequency equal to zero, while retaining the
wavenumber dependence of the solutions. This is in contrast to the O(Q1/6) scaling
which leads to distinct problems for steady and oscillatory convection, and yields
results that are entirely wavenumber independent (Matthews 1999). These properties
are the consequence of the very flat neutral stability curve in this wavenumber range.

In either case the dominant balance in the large-Q limit reflects the tendency of the
inclined magnetic field to force the perturbation wavenumber k0 to be perpendicular
to it: r̂ · k0 = 0. As a result unless χ = π/2 the fast horizontal variation due
to the small horizontal wavenumber translates into rapid variation in the vertical
(k0z = −k0x tan ϑ; see figure 2c). Physically, this is the result of the alignment of
the narrow convection rolls selected at onset with the imposed tilted field. This fact
motivates the introduction of a two-scale approach to describe the vertical structure
of the resulting convection, as discussed in the next section. In the large-Q limit the
linear stability results for O(Q1/4) wavenumbers become independent of the nature of
the velocity and magnetic boundary conditions at the top and bottom of the layer
and can therefore be determined analytically:

Ra(s) =
(
1 + cos2 χ tan2 ϑ

)
[π2 cos2 ϑQ+ (1 + cos2 χ tan2 ϑ)2k4

0⊥], (3.1)

where k2
0 = k2

0⊥(1 + cos2 χ tan2 ϑ). The minimum occurs at k0⊥ = 0:

Ra(s)
c =

(
1 + cos2 χ tan2 ϑ

)
π2 cos2 ϑQ. (3.2)

This equation predicts that for χ = 0 Rac is independent of ϑ, in good agreement
with the results of figure 2. Likewise, for ζ < 1, the onset of overstable oscillations
occurs at

Ra(o) =
(
1 + cos2 χ tan2 ϑ

) [ σ + ζ

σ(1 + σ)

]
×[π2 cos2 ϑσζQ+ (1 + σ)(1 + ζ)(1 + cos2 χ tan2 ϑ)2k4

0⊥], (3.3)

ω(o)2 =
ζ

(1 + σ)
[(1− ζ)π2 cos2 ϑσQ− ζ(1 + σ)(1 + cos2 χ tan2 ϑ)2k4

0⊥]. (3.4)
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Again, the minimum occurs at k0⊥ = 0:

Ra(o)
c =

(
1 + cos2 χ tan2 ϑ

)(σ + ζ

1 + σ

)
π2 cos2 ϑζQ, ω(o)2

c =

(
1− ζ
1 + σ

)
π2 cos2 ϑσζQ

(3.5)

and is independent of ϑ when χ = 0. Furthermore, Ra(o)
c < Ra(s)

c . In these expressions
the wavenumber k0⊥ is the physical horizontal wavenumber, i.e. k0⊥ = O(Q1/4). The se-
lection of k0⊥ = 0 is thus a reflection of the selection of a smaller wavenumber, namely
k0⊥ = O(Q1/6). However, the Q1/4 scaling determines correctly the resulting minimum
Rayleigh numbers and frequency. Moreover, as pointed out by Chandrasekhar (1961),
the O(Q1/4) scaling also captures the transition from steady to oscillatory convection.
This transition takes place when ω(o)

c = 0, i.e. at

RaTB =
(
1 + cos2 χ tan2 ϑ

)[ σ + ζ

ζ(1 + σ)

]
π2 cos2 ϑQ, (3.6)

k⊥TB =

[
π cos ϑ

(1 + cos2 χ tan2 ϑ)

]1/2[
σ(1− ζ)
ζ(1 + σ)

]1/4

Q1/4, (3.7)

and defines the Takens–Bogdanov (TB) point. Consequently the O(Q1/4) scaling
describes correctly not only the vicinity of the Takens–Bogdanov point but also the
behaviour for onset wavenumbers far from this point, i.e. it allows us to retain the
full wavenumber dependence of the problem.

We do not give a detailed derivation of these results since these follow immediately
from those obtained in the following section. For future reference we note that when
ϑ = 0 all χ dependence necessarily drops out. However, in contrast to the moderate-Q
results of Matthews et al. (1992) Rac(χ = π/2) < Rac(χ = 0) for all ϑ 6= 0 and
hence away from the Takens–Bogdanov point the large-Q linear theory suggests that
parallel rolls are always selected at onset. In § 8 we identify a plausible mechanism
that selects between the two roll orientations in the fully nonlinear regime.

4. The reduced equations
For large values of the Chandrasekhar number Q simplified equations describing

the nonlinear problem can be obtained using the scaling (cf. Julien et al. 1999a)

(x, y, z) = Q−1/4(x′, y′, z′), t = Q−1/2t′, (4.1)

suggested in the preceding section. With this scaling we focus on small horizontal and
vertical scales (and high-frequency oscillations in the case of overstable convection).
As in the related problem of convection on a rapidly rotating f-plane (Julien &
Knobloch 1998) the linear eigenfunction must also vary on an O(1) vertical scale
which we denote by Z (see figure 2c). Consequently we set

∂x, ∂y = Q1/4(∂x′ , ∂y′), ∂z = Q1/4(∂z′ + Q−1/4D), ∂t = Q1/2∂t′ , (4.2)

where D ≡ ∂Z . The resulting expansion reflects the tendency towards small-scale
motion aligned with the inclined magnetic field. We focus on O(Q) Rayleigh numbers,
i.e. we also write

Ra = QRa′, (4.3)

but in contrast to Proctor (1986) do not scale the thermal and magnetic Prandtl
numbers, which are assumed to remain of order one. In this regime the convective
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motions do not distort the field substantially and the dominant nonlinear effect arises
from the distortion of the mean temperature profile. Finally, the fluid variables are
scaled according to

φ = φ′(x′, y′, z′, Z, t′) + O(Q−1/4), (4.4)

ψ = Q−1/4ψ′(x′, y′, z′, Z, t′) + O(Q−1/2), (4.5)

A = Q−1/2A′(x′, y′, z′, Z, t′) + O(Q−3/4), (4.6)

B = Q−3/4B′(x′, y′, z′, Z, t′) + O(Q−1), (4.7)

T = θ0(Z) + Q−1/4θ′(x′, y′, z′, Z, t′) + O(Q−1/2). (4.8)

These scalings imply that the velocity and magnetic field perturbations are (approx-
imately) isotropic with u ≈ O(Q1/4) and b ≈ O(Q−1/4) although, as shown below, the
toroidal fields in fact decouple from the poloidal ones. Such a decoupling is to be
expected in a weakly nonlinear description but its occurrence here in a fully nonlinear
theory is not a priori obvious.

We next introduce the notation

∇ = ∇0 + Q−1/4Dẑ, ∇0 = (∂x′ , ∂y′ , ∂z′), ∇0⊥ = (∂x′ , ∂y′ , 0), (4.9)

∇2 = (∇2
0 + 2Q−1/4∂z′D + Q−1/2D2), ∇2

0 = ∂2
x′x′ + ∂2

y′y′ + ∂2
z′z′ . (4.10)

The equations describing the departure from the conduction state now become
(dropping primes)

−ζ r̂ · ∇0∇2
0⊥A = Q−1/4[ζ(r̂zD∇2

0⊥A+Mφ)

+∇2
0∇2

0⊥φ− 1

σ
(∂t∇2

0⊥φ+Nφ)] + O(Q−1/2), (4.11)

−ζ r̂ · ∇0∇2
0∇2

0⊥B = Q−1/4

[
ζ(r̂zD∇2

0∇2
0⊥B +Mψ)

+∇4
0∇2

0⊥ψ − 1

σ
(∂t∇2

0∇2
0⊥ψ +Nψ)− Ra∇2

0⊥θ
]

+ O(Q−1/2),

(4.12)

−r̂ · ∇0∇2
0⊥φ = Q−1/4(r̂zD∇2

0⊥φ+ ζ∇2
0∇2

0⊥A− ∂t∇2
0⊥A−MA) + O(Q−1/2), (4.13)

−r̂ · ∇0∇2
0⊥ψ = Q−1/4(r̂zD∇2

0⊥ψ + ζ∇2
0∇2

0⊥B − ∂t∇2
0⊥B −MB) + O(Q−1/2), (4.14)

with the temperature equation given by

∂tT + Q−1/2NT = ∇2
0T . (4.15)

These equations are solved by an asymptotic expansion of the form

Ψ = Ψ1 + Q−1/4Ψ2 + Q−1/2Ψ3 + · · · , (4.16)

where Ψ ≡ (φ, ψ, θ, A, B)T . At O(Q0) one obtains

r̂ · ∇0∇2
0⊥A1 = 0, r̂ · ∇0∇2

0∇2
0⊥B1 = 0, r̂ · ∇0∇2

0⊥φ1 = 0, r̂ · ∇0∇2
0⊥ψ1 = 0. (4.17)

Thus on small scales all perturbations align with the imposed magnetic field. Solutions
of this type take the form

Ψ1(x, Z, t) =

∫
Ψ̂1(k0, Z, t)e

ik0·xdk0 + c.c., (4.18)
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where k0 · r̂ = 0. Since r̂ = (sin ϑ, 0, cos ϑ) and (k0x, k0y) = k0⊥(cos χ, sin χ) it follows
that k0z = −k0x tan ϑ = −k0⊥ cos χ tan ϑ.

The solvability condition at O(Q−1/4) yields evolution equations for the amplitudes
Ψ̂1(k0, Z, t):

1

σ

(
∂tφ̂1 − 1

k2
0⊥
PNφ(Ψ1)

)
= ζ

(
r̂zDÂ1 − 1

k2
0⊥
PMφ(Ψ1)

)
− k2

0φ̂1, (4.19)

1

σ

(
∂tψ̂1 +

1

k2
0k

2
0⊥
PNψ(Ψ1)

)
=
Ra

k2
0

θ̂1 + ζ

(
r̂zDB̂1 +

1

k2
0k

2
0⊥
PMψ(Ψ1)

)
− k2

0ψ̂1, (4.20)

∂tÂ1 − 1

k2
0⊥
PMA(Ψ1) = r̂zDφ̂1 − ζk2

0Â1, (4.21)

∂tB̂1 − 1

k2
0⊥
PMB(Ψ1) = r̂zDψ̂1 − ζk2

0B̂1, (4.22)

where P is a projection operator that filters out the fast spatial variation defined by:

Pf(Ψ1) ≡ 1

(2π)3

∫
e−ik0·xf(Ψ1) dx. (4.23)

The projection P is thus equivalent to averaging over the fast spatial scales and
plays much the same role as the temporal averaging operator in the work of Babin,
Mahalov & Nicolaenko (1994) on rapidly rotating turbulence.

The temperature equation yields the following equations at O(Q1/4) and O(Q0),
respectively:

∂tθ1 − J[φ1, θ1] + (∇0⊥∂zψ1 · ∇0⊥θ1 − ∇2
0⊥ψ1∂zθ1)− ∇2

0⊥ψ1Dθ0 = ∇2
0θ1, (4.24)

∂tθ2 − J[φ1, θ2]− J[φ2, θ1] + (∇0⊥∂zψ1 · ∇0⊥θ2 − ∇2
0⊥ψ1∂zθ2)

+ (∇0⊥∂zψ2 · ∇0⊥θ1 − ∇2
0⊥ψ2∂zθ1) + (∇0⊥Dψ1 · ∇0⊥θ1 − ∇2

0⊥ψ1Dθ1)

− ∇2
0⊥ψ2Dθ0 = ∇2

0θ2 + 2∂zDθ1 + D2θ0. (4.25)

Equation (4.24) can be solved for θ1. Once this is done the solvability condition for
the mean part of θ2 yields

D2θ0 + D(∇2⊥ψ1θ1) = 0, (4.26)

which can be integrated once, obtaining

Dθ0 + ∇2⊥ψ1θ1 = −K. (4.27)

For steady patterns the constant K is identified with the Nusselt number; for oscilla-
tory patterns we extend the meaning of the overbar to indicate an average over time
as well. For such patterns K represents the time-averaged Nusselt number.

Since the complications arising from the presence of the projection P are absent in
the linear problem we can use the linearized equations (4.19)–(4.24) to solve the linear
stability in the limit of large Q. We then recover the asymptotic results reported in § 3.

5. Tilted rolls
Equations (4.19)–(4.22) and (4.24), (4.27) constitute a closed set of equations for

the evolution of the vertical profile of the different fields. The simplest case of such
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evolution is offered by (tilted) two-dimensional roll solutions of the form

Ψ1 = ΨL(Z) exp (iωt+ ik0 · x) +ΨR(Z) exp (iωt− ik0 · x) + c.c., (5.1)

where Ψ1 = (φ1, ψ1, θ1, A1, B1). For these solutions none of the nonlinear terms Nφ,Mφ,
Nψ , Mψ,MA,MB contributes to the leading-order solvability conditions which reduce
to a simple set of linear equations:

(iω + ζk2
0)A(L,R) = r̂zDφ(L,R), (iω + ζk2

0)B(L,R) = r̂zDψ(L,R),(
iω

σ
+ k2

0

)
φ(L,R) = ζr̂zDA(L,R),

(
iω

σ
+ k2

0

)
k2

0ψ(L,R) = Raθ(L,R) + ζk2
0 r̂zDB(L,R).


(5.2)

Moreover,

(iω + k2
0)θ(L,R) = −k2

0⊥ψ(L,R) Dθ0. (5.3)

These equations have a circle of solutions of the form ΞL = cΞR , where ΞL,R(Z) =
(ΦL,R(Z), ΨL,R(Z), ΘL,R(Z), AL,R(Z), BL,R(Z)) and c is an arbitrary complex constant.
The particular cases c = 0 and c = exp iϕ, where ϕ is a phase, correspond respectively
to travelling and standing waves. All these solutions satisfy the same equations, as
can be seen by introducing the transformation

ΞL =
Ξ√

1 + |c|2 , ΞR =
cΞ√

1 + |c|2 , (5.4)

where Ξ(Z) = (Φ(Z), Ψ (Z), Θ(Z), A(Z), B(Z)). From equation (4.27) we now obtain

Dθ0

[
1 +

2k2
0k

4
0⊥

ω2 + k4
0

|Ψ |2
]

= −K, (5.5)

with K given by the requirement that θ0(0) = 1, θ0(1) = 0:

K =

[∫ 1

0

ω2 + k4
0

ω2 + k4
0 + 2k2

0k
4
0⊥|Ψ |2

dZ

]−1

. (5.6)

From the ψ, θ and B equations we now obtain the nonlinear eigenvalue problem

D2Ψ− (Dζ)k2
0

iω + ζk2
0

DΨ− 1

r̂2
z ζ

(
iω

σ
+k2

0

)
(iω+ζk2

0)Ψ+
RaK

r̂2
z ζ

(iω + ζk2
0)(−iω + k2

0)

ω2 + k4
0 + 2k2

0k
4
0⊥|Ψ |2

k2
0⊥
k2

0

Ψ=0.

(5.7)

The solutions of this problem depend on the prescribed function ζ(z) as well as the
parameters Ra, k0, k0⊥ and σ. In the case where ζ is constant equation (5.7) reduces
to

D2Ψ − 1

r̂2
z ζ

(
iω

σ
+ k2

0

)
(iω + ζk2

0)Ψ +
RaK

r̂2
z ζ

(iω + ζk2
0)(−iω + k2

0)

ω2 + k4
0 + 2k2

0k
4
0⊥|Ψ |2

k2
0⊥
k2

0

Ψ = 0. (5.8)

In these equations k2
0 = k2

0⊥(1 + cos2 χ tan2 ϑ). Note that when ζ is constant steady
solutions (ω = 0) are independent of both σ and ζ. The latter is not generally true
and for finite Q the steady solutions do depend on ζ.

In contrast the Φ and A equations yield the linear eigenvalue problem:

D2Φ− (Dζ)k2
0

iω + ζk2
0

DΦ =
1

r̂2
z ζ

(
iω

σ
+ k2

0

)
(iω + ζk2

0)Φ. (5.9)
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Since ω is already known from equation (5.7) this problem typically has only the
trivial solution Φ ≡ 0, implying A ≡ 0. Hence no toroidal components are present.

6. Results
Equations (5.7), (5.8) are to be solved subject to the boundary conditions

Ψ (0) = Ψ (1) = 0, (6.1)

imposing impermeability of the boundaries. As already indicated these boundary con-
ditions are the appropriate ones for solution in the bulk, outside of thin (and passive)
boundary layers required by specific velocity and magnetic field boundary conditions.
We solve this problem on a discretized one-dimensional mesh using an iterative
Newton–Raphson–Kantorovich scheme (Henrici 1962; Cash & Singhal 1982) with
O(10−10) accuracy in the L2 norm of Ψ (Z) and the corresponding eigenvalues. The
solution determines K and ω for a two-parameter family of solutions depending on
the complex parameter c, whose vertical profile is given in terms of the eigenfunction
Ψ (Z) by (5.4).

In the following we present detailed results for different tilt angles ϑ in the per-
pendicular (χ = 0) and parallel (χ = π/2) cases. When the imposed field is vertical
(ϑ = 0) these two situations are indistinguishable. However, as mentioned in the
introduction, in the extreme case of a horizontal field (ϑ = π/2) they behave in a
fundamentally different way. We begin with the case of constant ζ, with the effects of
a depth-dependent ζ described in § 6.4.

6.1. Perpendicular rolls: χ = 0

We first discuss our results for the perpendicular case χ = 0. We set the horizontal
wavenumber k0⊥ = 1.0 and Prandtl number σ = 1.1 and focus on the changes in the
solutions as the tilt angle ϑ and the magnetic diffusivity ζ are changed. Effects of
changing the wavenumber are discussed in § 6.5.

When ζ is sufficiently small the linear theory in § 3 shows that oscillatory solutions
are the first to set in; thus oscillatory convection transports heat more efficiently (at
least near onset) than steady convection. Consequently we set ζ = 0.1 and investigate
the changes as the tilt angle ϑ is increased from zero. Figure 3(a) shows the Rayleigh
number dependence of the (time-averaged) Nusselt number K for both steady and
oscillatory convection for a relatively small tilt angle, ϑ = π/18. The frequency of
the oscillations is shown in figure 3(b). As in the vertical case discussed by Julien
et al. (1999a) the Nusselt number is a monotonically increasing function of Ra and
the frequency tends to a constant value in the limit of large Ra, indicating that the
oscillations are of magnetic origin.

In figure 4 we show |Ψ (Z)| (figure 4a) and the corresponding mean temperature
θ0(Z) (figure 4b) for several values of Ra > Ra(o)

c for the oscillatory case. The
nonlinear interaction between θ0 and the oscillatory motion is responsible for the
O(1) adjustments in θ0 which result in the development of a broad isothermal interior
and thin thermal boundary layers near the top and bottom with increasing Ra.
Solutions of this type resemble those obtained elsewhere for a vertical magnetic field
(Julien et al. 1999a).

As the tilt angle is increased the oscillatory solution becomes less efficient at
transporting heat, and the Nusselt number has a weaker dependence on Ra as shown
in figure 5, although the general form of this dependence continues to resemble the
vertical case. The increase in tilt angle leads to a larger Lorentz force, which in
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Figure 3. (a) The (time-averaged) Nusselt number K for steady (dashed line) and oscillatory (solid
line) perpendicular rolls as a function of the scaled Rayleigh number Ra when ζ = 0.1, σ = 1.1 and
ϑ = π/18. (b) The corresponding (scaled) oscillation frequency ω. Note that ω appears to saturate
with increasing Ra.
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Figure 4. (a) Convection amplitude for perpendicular rolls as measured by |Ψ (Z)| and (b) mean
temperature profile θ0(Z) for oscillatory convection at (scaled) Ra = Rac, 2, 6, 10, 50, 170, 370,
650, 1010 showing the development of thin thermal boundary layers and a broad isothermal core
with increasing Ra when ζ = 0.1, σ = 1.1 and ϑ = π/18. These properties characterize the ‘vertical’
convection mode.

turn leads to a suppression of the heat transport. In the steady case the dependence
on tilt angle is much weaker. This is to be expected since in the oscillatory regime
ohmic diffusion has only a finite time to reduce the Lorentz force due to field
distortion before the flow reverses. In contrast, in the steady case the magnetic field
perturbation is expelled into narrow boundary layers and the Lorentz force exerts a
much weaker effect. In this case the reduction of the Nusselt number is largely due
to a geometrical effect: the strong oblique magnetic field inclines the convection cells
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Figure 5. (a) The (time-averaged) Nusselt number K for steady (dashed lines) and oscillatory (solid
lines) perpendicular rolls as a function of the scaled Rayleigh number Ra for several values of the
tilt angle ϑ when ζ = 0.1, σ = 1.1. (b) The corresponding (scaled) oscillation frequencies ω. Both K
and ω decrease monotonically with increasing ϑ.

relative to the vertical allowing them more time to lose their upward buoyancy to
adjacent descending fluid.

Figure 6 shows the corresponding results for the oscillatory mode when ϑ = π/4.
The figure reveals a remarkable behaviour: the Nusselt number K initially increases
rapidly with Ra as in the vertical magnetic field case, but then undergoes a hysteretic
transition to a new state characterized by a small Nusselt number, and one that
decreases slowly with increasing Ra. As this state is followed to larger Rayleigh
numbers we see that the mean temperature becomes almost piecewise linear (figure 7b),
with a limited isothermal core. The vertical extent of this core quickly saturates, in
contrast to the case of a vertical field for which the isothermal core grows continuously
with Ra as the temperature gradients are compressed into ever thinner thermal
boundary layers (as in figure 4b). Evidently, in this state increasing the heat input
does not result in increased heat transport across the layer. Instead, as discussed
further below, the added energy is all stored in the magnetic field perturbations (since
the imposed field strength is large this is achieved with small deformation of the
field); moreover, the perturbation magnetic field suppresses the convective motion in
the boundary layers near the top and bottom (see figure 7a) thereby reducing the
transport of heat across the layer. In this regime (i.e. on the branch where the Nusselt
number remains low as Ra is increased) the system of perpendicular rolls therefore
behaves much more like one with an imposed horizontal field.

Figure 7b indicates that the new regime (hereafter the ‘horizontal’ regime) is
characterized by broad thermal boundary layers. This is a simple consequence of the
suppression of all flow in these layers (see figure 7a) by the perturbation magnetic
field. As a result the temperature profile in these boundary layers is linear. For
example, equation (5.5) shows that in the top boundary layer θ0 = K(1 − z). Since
the temperature at the outer edge of the boundary layers is θ0 = 1/2 their width
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Figure 6. (a) The (time-averaged) Nusselt number K for oscillatory perpendicular rolls as a function
of the scaled Rayleigh number Ra for ϑ = π/4 and ζ = 0.1, σ = 1.1. (b) The corresponding frequency
ω. Note the hysteretic transition from the ‘vertical’ convection mode to the ‘horizontal’ convection
mode with increasing Ra.

1.0

0.8

0.6

0.4

0.2

0
0 10 20 30

Z

(a)

|W|
0 0.8 1.0

(b)

h0

0.60.40.2

Figure 7. (a) Convection amplitude as measured by |Ψ (Z)| and (b) mean temperature profiles θ0(Z)
for oscillatory perpendicular rolls at ϑ = π/4 (scaled) Ra = 41.17, 65.17, 89.17, 113.17, 137.17, 161.17,
171.17, 201.17, 251.17, 321.17, 411.17, 521.17, 651.17, showing the development of broad boundary
layers and small isothermal core with increasing Ra when ζ = 0.1, σ = 1.1. These properties are
characteristic of the ‘horizontal’ convection mode.

is approximately 1/2K . Moreover, since K is almost independent of the Rayleigh
number so is their structure once the Rayleigh number is high enough. This is so
despite the fact that the convective amplitude in the isothermal interior continues
to increase monotonically with Ra in this regime. As a result the high Rayleigh
number asymptotics described by Julien et al. (1999a) do not break down owing to
the formation of O(Q−1/4) boundary layers at the top and bottom; such boundary
layers only form in steady convection. Note that the Rayleigh number must exceed a
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(a)

(b)

Figure 8. Contours of constant B1(x, z, Z, t) at a particular instant in time on (a) the vertical
mode branch when ϑ = 10◦ and Ra = 1010, and (b) the horizontal mode branch when ϑ = 45◦
and Ra = 738.77. The parameters are Q1/4k0⊥ = 1.0, ζ = 0.1 and σ = 1.1. The magnetic field
perturbation peaks close to the boundaries in (a) but defines the outer boundary of the stagnant
boundary layers in (b). Solid (dashed) lines indicate positive (negative) values.

critical value before the horizontal convection mode sets in. This is because the flow
in the interior must be strong enough to expel the magnetic field perturbation into
the boundary layers at the top and bottom; this expulsion occurs primarily in the
direction parallel to the field since the velocity in this direction is much larger than
the horizontal velocity. In steady convection the resulting boundary layer thickness is
determined by the magnetic Reynolds number and is small if this is large. In contrast,
in an oscillatory flow the flow reversals prevent the formation of such narrow boundary
layers and the boundary layer thickness is determined by the perturbation Lorentz
force and not the magnetic Reynolds number. The resulting boundary layers are
therefore wider than in the case of steady convection. Support for this interpretation
is provided by figure 8 which shows contours of the magnetic flux function B1(x, z, Z, t)
at a particular instant in time for solutions on the vertical and horizontal branches.
In the former case the magnetic field perturbation is confined to the vicinity of
the top and bottom boundaries; in the latter it peaks at the boundary between the
isothermal core and the stagnant boundary layers, and vanishes in the boundary
layers themselves, i.e. the field in these boundary layers is the imposed tilted field.

A number of conclusions follow immediately from the above considerations. First,
the transition between the two regimes occurs at lower Rayleigh numbers when ϑ is
larger. Indeed, for small values of the tilt angle ϑ we have shown that the transition
to the lower horizontal branch does not occur (for this value of ζ) but that solutions
stay on the efficient vertical branch. Moreover, since the ability of the magnetic field
to suppress oscillatory convection increases with decreasing ζ, we expect the value
of the Rayleigh number at which the transition from the vertical field regime to the
horizontal field regime takes place to be an increasing function of ζ. Figure 9 shows
the Rayleigh number at which the vertical branch turns around (i.e. the Rayleigh
number RaSN) as a function of ζ for ϑ = π/4 confirming this expectation. This
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Figure 9. The Rayleigh number for the upper saddle-node bifurcation in figure 6 (ϑ = π/4)
diverges with increasing ζ.
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Figure 10. (a) The (time-averaged) Nusselt number K for oscillatory perpendicular rolls as a
function of the scaled Rayleigh number Ra for ϑ = π/4 and ζ = 0.15, σ = 1.1, showing multiple
branches. (b) The corresponding frequencies ω.

argument also explains why the two convection regimes are only found in oscillatory
convection.

In figure 10 we show that if ζ is increased further (to ζ = 0.15) the situation becomes
radically different. The vertical field branch now extends to arbitrarily large Rayleigh
numbers while the horizontal field branch has become disconnected. The upper saddle-
node bifurcation has therefore disappeared. Solutions on the disconnected branch can
only be found by continuation in ζ at sufficiently large Ra from the horizontal field
solutions obtained with ζ = 0.1 (figure 6). If Ra is then decreased at ζ = 0.15 one
follows the horizontal field branch to a saddle-node bifurcation (at Ra ≈ 65.8), where
it turns around. Near this point the character of the solution changes abruptly, and
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Figure 11. As figure 10 but for ϑ = 0.5632 and ζ = 0.1 showing a completely disconnected
horizontal branch.

the solutions begin to look like those on the vertical field branch that connects to
K = 1. Figure 11 shows that the disconnected branch moves away from the vertical
branch as the tilt angle is decreased. For these parameter values (ϑ = 0.5632 < π/4,
ζ = 0.1, σ = 1.1) the saddle-node bifurcation on the horizontal branch has moved out
to Ra ≈ 635. This result suggests that the critical value of ζ at which the vertical and
horizontal field branches disconnect is an increasing function of ϑ; the qualitative
theory described in § 6.5 lends support to this suggestion.

In summary, in the perpendicular case (χ = 0) the behaviour of the system falls
into two possible regimes. For small tilt angles the magnetic field plays a minor role
in inhibiting convection and the Nusselt number is an increasing function of the
Rayleigh number. If the tilt angle is increased past a threshold value (which depends
on the value of ζ) a hysteretic transition may take place with increasing Rayleigh
number from this vertical field regime to a horizontal field regime in which the field
plays a major role in inhibiting the heat transport.

Although we do not calculate the stability of these solutions, continuity arguments
suggest that in the absence of secondary Hopf and parity-breaking bifurcations (and
of sideband instabilities) the upper vertical field branch is stable up to the first saddle-
node bifurcation (if present), as is the lower of the two horizontal field branches.

6.2. Parallel rolls: χ = π/2

As noted earlier, when the imposed field is horizontal and the roll axes parallel to the
plane containing the tilted magnetic field it is possible for the fluid to move without
distorting the field. This is no longer so when the field is inclined and one expects that
in this case the behaviour will resemble that described above for the perpendicular
case. This is indeed so, although the transition from the vertical convection mode to
the horizontal mode now takes place at larger inclinations ϑ. Figure 12 shows the
Rayleigh number dependence of the Nusselt number and oscillation frequency for
steady and oscillatory parallel rolls when ϑ = π/4, ζ = 0.1 and σ = 1.1, while figure 13
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Figure 12. (a) The (time-averaged) Nusselt number K for steady (dashed line) and oscillatory (solid
line) parallel rolls as a function of the scaled Rayleigh number Ra for ϑ = π/4 when ζ = 0.1,
σ = 1.1. (b) The corresponding (scaled) oscillation frequency ω.
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Figure 13. As figure 12 but when ϑ = 1 (ϑ = 57◦), showing a transition to the horizontal
convection mode.

shows the corresponding results for ϑ = 1. In the former case the oscillatory solutions
remain on the vertical branch for all values of Ra, while the frequency saturates as Ra
increases, in contrast to the behaviour shown in figure 6 for the perpendicular case.
However, as shown in figure 13, a transition to the horizontal branch does occur for
larger tilt angles, as anticipated in section 1.
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The results for rolls inclined at intermediate angles χ are qualitatively similar.
For example, for the parameter values of figure 12 and χ = π/4 the saddle-node
bifurcation on the vertical branch occurs at RaSN ≈ 66.5 instead of at RaSN ≈ 49.73,
the value for χ = 0; when χ = π/2 there is no saddle-node bifurcation for ϑ = π/4
but for ϑ = 1 RaSN ≈ 168.

6.3. Rectangular patterns

From symmetry considerations it is clear that a solution with orientation χ is accom-
panied by another solution with orientation −χ. Consequently it should be possible
to find three-dimensional solutions with a rectangular planform. Such solutions can
certainly be found at small amplitude. There are two types of steady convection
patterns, oblique rolls and rectangles; in the case of overstable patterns there are six
solutions that appear generically in the primary Hopf bifurcation (Silber, Riecke &
Kramer 1992). These are travelling and standing oblique rolls, two types of travelling
rectangles, one type of standing rectangles and a rectangular pattern called alternating
rolls. The steady solutions take the form

Ψ (x, Z) = 1
2
Ψ (Z){a+eik1·x + a−eik2·x + c.c.}, (6.2)

where k1,2 = k0⊥(cos χ,± sin χ,− cos χ tan ϑ). It is easy to check that the projection P
still eliminates all nonlinear terms from equations (4.19)–(4.22). However, the fully
nonlinear theory carries through only if the two nonlinear terms in (4.24) also vanish.
We find that this is so only for oblique rolls (a+ = 0, or a− = 0) or for travelling or
standing oblique rolls. Such patterns are two-dimensional and hence described by the
nonlinear eigenvalue problems (5.7), (5.8). Thus no fully nonlinear three-dimensional
solutions are accessible by the asymptotic method used here.

6.4. Depth-dependent magnetic diffusivity

In this section we discuss the effect of prescribing a diffusivity that is a function of
depth, i.e. ζ ≡ ζ(Z). We follow Weiss et al. (1990, 1996) and Julien et al. (1999a) and
choose a linear dependence on depth, ζ(Z) = ζ0 +ε(1−Z). We can think of this depth
dependence as a consequence of a depth-dependent ohmic diffusivity, provided we
reinterpret the quantity η entering into the definition of the Chandrasekhar number
Q as a reference value, for example, measured at mid-depth. The most interesting
case arises when ζ changes from favouring oscillatory convection at the top of the
layer (ζ < 1) to favouring steady convection at the bottom of the layer (ζ > 1). In the
following we therefore choose ζ0 = 0.1, ε = 2.0 and investigate in the perpendicular
case χ = 0 changes in the solution as Ra increases for two different values of the tilt
angle ϑ.

The vertical field case (ϑ = 0) has been investigated in detail by Julien et al. (1999a)
as a function of the parameter ε. The corresponding results for ϑ = π/4 are shown in
figure 14. The behaviour of both the Nusselt number and frequency with increasing
Ra is very similar to that in the vertical case. For the present parameter values
the primary bifurcation is a steady-state one but the resulting steady convection
loses stability almost immediately to an oscillatory mode. This transition involves
a degenerate Takens–Bogdanov bifurcation of the type discussed by Julien et al.
(1999a). As Ra is increased further the oscillatory mode behaves in the usual manner
for the vertical branch with K increasing monotonically with Ra and the frequency ω
saturating. Because of the up–down asymmetry introduced by the depth dependence
of ζ, the solution is no longer symmetric with respect to Z = 1/2. Julien et al. (1999a)
show examples of similar solutions for an imposed vertical magnetic field.
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Figure 14. (a) The (time-averaged) Nusselt number K(Ra) for oscillatory perpendicular rolls when
ϑ = π/4 and ζ(Z) = ζ0 + ε(1 − Z) with ζ0 = 0.1 and ε = 2.0. (b) The corresponding frequency
ω(Ra). The primary instability is a steady-state one but the resulting steady convection (dashed
line) loses stability almost immediately to oscillatory convection (solid line).

When the tilt angle is increased further the solution changes drastically in character,
as might be expected from the constant-ζ calculations. Figure 15 shows the branches
computed for ϑ = 5π/18 = 50◦ at low Ra. The primary instability is again a steady-
state one and gives rise to a monotonically increasing branch of steady solutions,
which quickly lose stability to oscillatory convection, exactly as in figure 14. However,
at larger Ra (see figure 16) the behaviour is now quite different. Although the
Nusselt number for the (unstable) steady branch increases monotonically with Ra,
the behaviour of the oscillatory branch is quite complex. After an initial increase in
both frequency and K with Ra, the solution behaves for larger values of Ra like
a horizontal branch solution of the type described in the previous subsections. The
Nusselt number is a weak function of Ra and is non-monotonic. Investigation of
the behaviour of the streamfunction |Ψ (Z)| (figure 17a) and the corresponding mean
temperature θ0(Z) (figure 17b) shows that after a complicated series of transitions the
solution settles down to one in which a largely isothermal core is squeezed between
two broad boundary layers characteristic of the horizontal branch. The solution
is strongly asymmetric with respect to the midplane Z = 1/2 due to the linear
dependence of ζ on Z .

Some care must be taken when interpreting these solutions. This is because the
depth-dependence of ζ fundamentally changes the symmetry properties of the prim-
itive equations when the imposed field is inclined. Because of the tilt of the field
these equations are not equivariant under left–right reflections but when ζ is constant
they are equivariant under the combined operation π consisting of a reflection in a
vertical plane followed by a reflection in the midplane of the layer. As a result if a
left-travelling wave is a solution so is a right-travelling wave, and consequently so are
standing waves. Moreover, steady solutions in the form of tilted convection cells are
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Figure 15. (a) The (time-averaged) Nusselt number K(Ra) for steady (dot-dashed line) and oscil-
latory (solid line) perpendicular rolls for ϑ = 5π/18 and ζ(Z) = ζ0 + ε(1 − Z) with ζ0 = 0.1 and
ε = 2.0. (b) The corresponding (scaled) oscillation frequency ω(Ra). Initially steady convection loses
stability to overstable convection at the point labelled TB.
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Figure 16. As for figure 15 but for a much larger range of Rayleigh numbers, showing the
development of the horizontal convection mode.

also possible. We have described solutions of this form in §§ 6.1 and 6.2. However, as
noted by Matthews et al. (1992) and discussed in more detail by Knobloch (1994),
when the properties of the layer depend on depth the midplane symmetry is usually
lost and so is the symmetry π. In this case there are generically no steady-state
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Figure 17. The development of (a) the convection amplitude |Ψ (Z)| and (b) mean temperature
profile θ0(Z) with scaled Rayleigh number corresponding to figure 15. Note the asymmetry of the
profiles.

bifurcations from the conduction state and the primary instability is a Hopf bifur-
cation to travelling waves with a preferred direction of propagation selected by the
tilt together with the depth-dependence. There are also no bifurcations to standing
waves, the counterparts of which are quasi-periodic waves that appear in a secondary
bifurcation from the primary travelling wave branch. These effects are absent in the
large-Q limit because they rely on frequency splitting due to the depth-dependence
and this remains of order one, i.e. on the O(Q1/2) timescale the drift of our steady
solutions is negligible and so is the second frequency accompanying our standing
waves, or the frequency difference between left- and right-travelling waves. Likewise,
the splitting in the critical Rayleigh numbers for the onset of left- and right-travelling
waves remains O(1) and hence small compared to the O(Q) Rayleigh numbers con-
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Figure 18. The time-averaged Nusselt number K as a function of the scaled Rayleigh number for
oscillatory perpendicular rolls with (a) k0 = 1.0, ϑ = 65◦, ζ = 0.1 and (b) k0⊥ = 0.1, ϑ = 75◦ and
ζ = 0.01, for comparison with figure 6. In both cases σ = 1.1.

sidered. It is important to bear these facts in mind when interpreting the solutions
just described.

6.5. Dependence on wavenumber

Thus far all the results described have been for k0⊥ = 1.0. Since one may argue, on
physical grounds, that the dynamics in an oblique field is determined by the total
wavenumber k0, we have also performed calculations with k0 = 1.0. For ϑ = 45◦ we
were unable to locate a horizontal branch for values of Ra comparable to those used
in figure 6. For larger values of ϑ, however, we found a bifurcation diagram that
is qualitatively similar to that shown in figure 6 (see figure 18a). In particular both
the vertical and the horizontal branches are still present, as is the hysteresis loop
separating them.

In weakly nonlinear theories of pattern selection the wavenumber of the pattern is
usually taken to be the one that minimizes the critical Rayleigh number for onset.
Although there is no reason for making this choice in a fully nonlinear theory such
as that described in this paper it is nonetheless of interest to examine the results
for this special choice of k0⊥. As indicated in § 3 the neutral stability curve is very
flat in the scaled variables but its minimum occurs at O(Q1/6) in unscaled variables,
corresponding to the limit k0⊥ → 0 in the scaled variables used here. In this limit the
problem (5.8) reduces to

D2Ψ0 +
ω2

0

r2
zσζ

Ψ0 +
RaK0

r2
z ζγ

1

1 + 2γ|Ψ0|2Ψ0 = 0, (6.3)

where γ ≡ k2
0/k

2
0⊥, and the frequency ω and the time-averaged Nusselt number K0



Nonlinear magnetoconvection in the presence of strong oblique fields 309

are given by

ω2
0 =

r2
zσζ(1− ζ)

1 + σ

∫ 1

0

|DΨ0|2 dz∫ 1

0

|Ψ0|2 dz

(6.4)

and

K−1
0 =

∫ 1

0

1

1 + 2γ|Ψ0|2 dz. (6.5)

The result (6.4) follows from the solvability condition for the imaginary part of Ψ2,
where Ψ = Ψ0 + k2

0⊥Ψ2 + · · · ; inessential factors have been absorbed into a rescaling
of Ψ0 which can be taken to be real. Equation (6.4) agrees with that obtained
by Matthews (1999) for vertical magnetic field (rz = 1) and O(Q1/6) wavenumbers.
Defining Ω0 ≡ ω0/rz we obtain an eigenvalue problem for Ra/γr2

z . As a consequence
for perpendicular rolls K0 is independent of ϑ, while the frequency scales with cos ϑ.
The solutions of the eigenvalue problem that arises if the limit k0 → 0 is taken instead
can be obtained from the above one on replacing γ by γ−2 and Raγ3 by Ra, namely

D2Ψ0 +
ω2

0

r2
zσζ

Ψ0 +
RaK0

r2
z ζ

γ

γ2 + 2|Ψ0|2Ψ0 = 0, (6.6)

with ω given by (6.4) and

K−1
0 =

∫ 1

0

γ2

γ2 + 2|Ψ0|2 dz. (6.7)

The solution of the problem (6.6) with (6.4), (6.7) behaves in a qualitatively similar
way to the finite-k0 problem: the frequency ω0 saturates with increasing Ra and the
numerical value agrees with that obtained by Matthews (1999) for ϑ = 0,† while the
Nusselt number still increases as Ra lnRa.

Figure 18(b) shows the effect of decreasing k0⊥ on the transition to the horizontal
regime for perpendicular rolls. In order to locate this regime for k0⊥ = 0.1 we found
it necessary to both decrease ζ and increase the tilt angle ϑ. On the basis of a
number of calculations with different values of k0⊥ and k0 we conjecture that, for
sufficiently small ζ, there is always a value of ϑ for which the bifurcation diagram
develops a horizontal branch with increasing Ra. However, for fixed ζ and σ, the
tilt angle which minimizes the Rayleigh number at which this branch first develops
depends on the wavenumber chosen. These conclusions are in agreement with a
qualitative argument for the presence of the horizontal regime. This argument is
based on the requirement that the flow in each tilted cell is sufficiently strong to
transport magnetic field perturbations into horizontal boundary layers along the top
and bottom boundaries. In a time-dependent flow this requirement takes the form
cp . U∗, where cp ≡ ω/(k0z cos ϑ) is the phase velocity parallel to the magnetic field
and U∗ is the corresponding parallel flow velocity (cf. Knobloch & Merryfield 1992).
Note that in unscaled variables ω = O(Q1/2), and k0z = O(Q1/4), while U∗ = O(Q1/4),
indicating that this requirement is independent of the magnetic field strength. Since
U∗ = O(k2

0⊥Ψ/ cos ϑ) while for large Ra (and small k0) Ra ∼ π(ζλ)1/2Ψ (2 lnΨ )−1/2

where λ ≡ λ(ζ, ϑ) is independent of Ra (Julien et al. 1999a), we conclude that for

† Figure 5 of Matthews (1999) shows ω2 as a function of Ra/Q, not ω.
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perpendicular rolls

k0⊥ & ω1/3
∞

(
cos2 ϑ

sin ϑ

)1/3

(ζλ)1/6Ra−1/3. (6.8)

To obtain this result we omitted logarithmic corrections and constants of order one,
and approximated the oscillation frequency at large Ra by ω∞ cos ϑ, where ω∞ is a
constant independent of both Ra and ϑ; in magnitude this constant is of the order
of π[σζ(1− ζ)/(1 + σ)]1/2. To examine the ϑ dependence of the requirement (6.8) we
need to determine the ϑ dependence of λ. This follows from (6.3) which shows that,
for large Ra, Ψ ∝ cos ϑ while K is ϑ-independent. Thus λ ∼ λ∞(ζ)/ cos2 ϑ. Moreover,
Julien et al. (1999a) show that λ∞ decreases with decreasing ζ. The condition (6.8)
thus becomes

k0⊥ & ω1/3
∞ (cot ϑ)1/3(ζλ∞)1/6Ra−1/3. (6.9)

It follows that if we decrease k0⊥ we must increase Ra substantially in order to observe
the transition to the horizontal regime. Moreover, for a given value of k0⊥, increasing
ϑ or decreasing ζ should reduce the value of Ra at which this transition takes place.
These predictions are also consistent with our numerical results (see figure 18b). The
condition (6.9) can also be written in the form

k0 & ω
1/3
∞ (sin ϑ cos2 ϑ)−1/3(ζλ∞)1/6Ra−1/3, (6.10)

indicating that for fixed k0 it is not possible to find the transition to the horizontal
regime simply by varying ϑ if the Rayleigh number is insufficiently large. These
predictions agree with our numerical calculations: when k0 = 0.1 we were unable to
locate a horizontal branch in the Rayleigh number range used in figure 18(b) for any
value of ϑ even when ζ = 0.01. It is possible that reducing ζ even further as suggested
by the above argument could help.

In the parallel case the wave does not propagate in the x-direction and there is no
difference between k0⊥ and k0. The transport mechanism is therefore changed from that
associated with a propagating wave to one characteristic of a standing wave. In the
present case the (unscaled) frequency of the wave is O(Q1/2) and the ohmic diffusivity
in such a rapidly oscillating (shear) flow is enhanced by the factor 1 + (1/2)(k3

0Ψ/ω)2

(cf. Knobloch & Merryfield 1992). In this case the asymptotic eigenvalue problem
(6.3) indicates that λΨ 2 ∝ cos2 ϑ while Ra ∼ π(ζλ)1/2Ψ (2 lnΨ )−1/2 cos ϑ. As a result
no reliable conclusion can be drawn from the leading-order asymptotics. Numerically,
we were unable to locate the horizontal branch for any ϑ when k0⊥ = 0.1 or k0 = 0.1
for values of ζ as low as 0.01.

7. Transport properties of tilted rolls
In this section we compute the mean horizontal flow, heat flux and magnetic

field associated with magnetoconvection in the presence of oblique fields. In this
section we reserve the overbar for horizontal averages and denote time-averages by a
superscript t.

The mean equations obtained from the horizontally averaged unscaled governing
equations are

1

σ
∂tU⊥ + D(wu⊥) = ζQ

(
cos ϑDB⊥ + D(bzb⊥)

)
+ D2U⊥, (7.1)

∂tB⊥ + D(wb⊥) = cos ϑDU⊥ + D(bzu⊥) + D(ζDB⊥), (7.2)
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with a similar equation from the temperature equation. There is no mean vertical
velocity: the vertical components of (7.1) are in equilibrium with a mean vertical
pressure gradient. Since u ∼ O(Q1/4), b ∼ O(Q−1/4) in all three directions the mean
components must scale according to U⊥ ∼ O(1), B⊥ ∼ O(Q−1/2). As mentioned in
§ 2 these mean quantities are small and can therefore be determined self-consistently

from the fluctuating components. Recalling that ∂t ∼ O(Q
1
2 ), the leading-order balance

gives

ζ cos ϑDB⊥ =
1

σ
∂tU⊥ + D(wu⊥ − ζbzb⊥), (7.3)

cos ϑDU⊥ = ∂tB⊥ + D(wb⊥ − bzu⊥), (7.4)

in scaled variables. The DC components of the mean fields are now obtained by
averaging over time and integrating with respect to Z . These expressions can be
written in terms of the time-averaged components of the Reynolds stress tensor,
Rij ≡ uiujQ

1/2, the magnetic stress tensor, Mij ≡ bibjQ
−1/2, and the mixed stress

tensor, τij ≡ uibj:

B
t

⊥ =
R
t

3⊥ − ζM t

3⊥
ζ cos ϑ

Q−1/2, U
t

⊥ =
τt3⊥ − τt⊥3

cos ϑ
. (7.5)

Note that the mean magnetic field is determined from the equation of motion, while

the mean flow comes from the induction equation. Since B
t

⊥, U
t

⊥ are both produced
in response to convection no constants of integration appear in these expressions.

Finally, we also introduce the heat flux F i ≡ uiθ whose horizontal component is
the mean horizontal heat flux.

7.1. The stress tensors

Expressions (7.5) require that we evaluate the components of the three tensors just
introduced. We find that all components of these quantities can be expressed in terms
of

R33 = 2k4
0⊥

[
|Ψ |2 +

c

1 + c2
Ψ 2e2iωt +

c

1 + c2
Ψ ∗2e−2iωt

]
Q1/2, (7.6)

M33 = 2k4
0⊥

[
|B|2 +

c

1 + c2
B2e2iωt +

c

1 + c2
B∗2e−2iωt

]
Q−1/2, (7.7)

τ33 = 2k4
0⊥

[
1
2
(ΨB∗ +Ψ ∗B) +

c

1 + c2
ΨBe2iωt +

c

1 + c2
Ψ ∗B∗e−2iωt

]
, (7.8)

F3 = 2k2
0⊥

[
1
2
(ΨΘ∗ +Ψ ∗Θ) +

c

1 + c2
ΨΘe2iωt +

c

1 + c2
Ψ ∗Θ∗e−2iωt

]
, (7.9)

with c = 0 for travelling waves and steady solutions (ω = 0), and c = 1 for standing
waves. In particular R ≡ (R11, R12, R13, R22, R23, R33) is given by

R =

[
k2

0xk
2
0z

k4
0⊥

,
k0xk0yk

2
0z

k4
0⊥

,−k0xk0z

k2
0⊥

,
k2

0yk
2
0z

k4
0⊥

,−k0yk0z

k2
0⊥

, 1

]
R33, (7.10)

with similar expressions for the magnetic and mixed tensors. The heat flux vector is
given by

F =

[
−k0xk0z

k2
0⊥

,−k0yk0z

k2
0⊥

, 1

]
F3. (7.11)
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Note that R33 measures the kinetic energy in vertical motions, while M33 measures the
magnetic energy in the vertical field perturbations and F3 is the vertical convective
heat flux.

For the computation of the horizontal mean flows we need the following higher-
order terms as well:

τj3 = k0jk
2
0⊥

1− c2

1 + c2
(iDΨB∗ − iDΨ ∗B)Q−1/4, (7.12)

τ3j = k0jk
2
0⊥

1− c2

1 + c2
(iDBΨ ∗ − iDB∗Ψ )Q−1/4, (7.13)

j = 1, 2. When χ = 0 (perpendicular rolls) these terms are subdominant but are
nonetheless necessary for the mean flow computation. When χ = π/2 (parallel rolls)
both k0x and k0z vanish, and k0y = k0⊥. In this case the only non-zero components of
the stress tensor and flux at leading order are the 33 and 3 components, respectively,
and it is necessary to carry the calculations to next order. In addition to (7.12), (7.13)
these lead to the formally subdominant contributions

R22 = 2k2
0⊥

[
|DΨ |2 +

c

1 + c2
(DΨ )2e2iωt +

c

1 + c2
(DΨ ∗)2e−2iωt

]
, (7.14)

R23 = k3
0⊥

1− c2

1 + c2
(iDΨΨ ∗ − iDΨ ∗Ψ )Q1/4, (7.15)

M22 = 2k2
0⊥

[
|DB|2 +

c

1 + c2
(DB)2e2iωt +

c

1 + c2
(DB∗)2e−2iωt

]
Q−1, (7.16)

M23 = k3
0⊥

1− c2

1 + c2
(iDBB∗ − iDB∗B)Q−3/4, (7.17)

F2 = k0⊥
1− c2

1 + c2
(iDΨΘ∗ − iDΨ ∗Θ)Q−1/4. (7.18)

The remaining quantities all vanish. Moreover, with the exception of R22 and M22,
the remaining quantities are non-zero only for travelling waves, as expected from
symmetry considerations.

7.2. Results

In figure 19 we show, for left-travelling waves with (a) χ = 0 (perpendicular case)
and (b) χ = π/2 (parallel case), the maximum value of the stress components R33,
M33, τ33 and F3 as a function of the Rayleigh number and various tilt angles, all
for k0⊥ = 1.0. These quantities determine all the other leading-order components
as indicated in equations (7.10), (7.11). The transition from the vertical field regime
to the horizontal one that occurs at large enough tilt angles is clearly visible in
both cases. We see that in the horizontal regime the vertical convective heat flux F3

continues to decrease with Ra while the magnetic perturbation energy M33 builds
up. These results confirm the physical interpretation of the horizontal field branch
given in § 6.1, i.e. in this convection mode the input energy is primarily stored as
magnetic energy instead of being transported through the layer by fluid motion. In
contrast, for fixed ϑ on the vertical branch all components increase monotonically
with Ra. Note that in the perpendicular case all components on the vertical branch
decrease monotonically with increasing ϑ at fixed Ra but that this is not so in the
parallel case. The corresponding behaviour for steady convection is much simpler
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Figure 19. The maximum values of the time-averaged Reynolds stress R33(Z)
t
, magnetic stress

M33(Z)
t
, mixed stress τ33(Z)

t
, and the vertical convective heat flux F3(Z)

t
for left-travelling waves

as functions of Ra for (a) χ = 0, (b) χ = π/2 and various ϑ. The remaining parameters are as for
figure 6.

and resembles that found in the oscillatory case for the vertical convection mode. In
figure 20(a, b) we show the vertical profiles of the dominant stress components for
both the vertical and horizontal regimes when χ = 0 which further highlight these
facts. A comparison of the profiles of M33 and of F3 is particularly useful. On the
vertical field branch the perturbation magnetic energy peaks at the top and bottom,
indicating that the magnetic field in the bulk is essentially the imposed inclined
field. At the same time the convective flux F3 is almost independent of z. On the
horizontal field branch, however, the convective flux is constant only in the small
convective core, and falls to zero in the stagnant boundary layers at the top and
bottom. At the same time the perturbation magnetic energy is small in the convective
core and the stagnant boundary layers, indicating the prevalence of the imposed field
in these regions, but peaks in the transition regions outside the core. In these regions
a substantial perturbation of the vertical field component is present, due primarily to
the recirculation of the field-aligned flow that takes place there. Finally, as shown in
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Figure 20. Vertical profiles of R33(Z)
t
, M33(Z)

t
, τ33(Z)
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and F3(Z)

t
for left-travelling waves when

χ = 0 on (a) the vertical branch when ϑ = 10◦, and (b) the horizontal branch when ϑ = π/4.
(c) The corresponding results for variable ζ and the parameters of figure 14 when ϑ = π/4.
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figure 20(c), the transport becomes asymmetric with respect to the midplane when ζ
becomes z-dependent. Observe that the convective heat flux is reduced in the upper
third of the layer. This is because the vertical velocity is reduced by the build-up
of magnetic field in this region. This build-up arises because the smaller value of ζ
in this region allows for more concentrated magnetic fields (the magnetic Reynolds
number is higher) and hence for a stronger Lorentz force. The pumping of flux into
this region is also reflected in the mixed tensor component τ33. Of particular interest
is the development of a double peak structure in the vertical kinetic energy R33 as Ra
increases. This is a consequence of two competing effects. In the low-ζ region near
the top the boundary layer structure is dominated by the Lorentz force, while in the
lower third of the layer the diffusive timescale is short enough to form essentially
diffusive boundary layers. The deformation of the imposed field in the top third
increases with Ra and allows for increased vertical (as opposed to oblique) motion;
at the same time the lower boundary layer becomes thinner and the resulting field-
reduced region favours more vigorous convection in the lower third of the layer. Some
tendency towards solutions of this type can be seen in the simulations of compressible
magnetoconvection in a horizontal magnetic field by Brownjohn et al. (1995). These
results remain qualitatively valid for parallel rolls as well.

We are now in a position to evaluate the mean horizontal flow and magnetic field.
Calculation of the former requires that we include second-order contributions in the
mixed stress tensor. We obtain

U
t

j =
k0jk

2
0⊥

cos ϑ

(
1− c2

1 + c2

)
D(iBΨ ∗ − iB∗Ψ )Q−1/4. (7.19)

This result implies that DC mean flows are only generated by travelling wave
convection. However, standing wave solutions drive an AC component of the mean

fields of the form (B⊥,U⊥) = (B̂⊥, Û⊥)(Z)e2iωt. The vertical profiles are determined
from

ζ cos ϑDB̂⊥ − 2iω

σ
Û⊥ = D(R3⊥ − ζM 3⊥)2ω, (7.20)

cos ϑDÛ⊥ − 2iωB̂⊥ = D(τ3⊥ − τ⊥3)2ω. (7.21)

In figure 21 we show the mean horizontal magnetic field and velocity for oscillatory
perpendicular rolls in the form of left-travelling waves (figure 21a, b) and compare the
results with those for perpendicular rolls and variable ζ (figure 21c), and parallel rolls
(figure 21d). On the vertical field branch the largest mean field is found at the top and
bottom, and the largest flow at midlevel (figure 21a); on the horizontal branch the
mean field and velocity are both nearly zero in the stagnant boundary layers at the
top and bottom, with current sheets developing with increasing Ra in the transition
region between these layers and the convective core (figure 21b). In both cases the
mean field near the top and bottom is opposite to the horizontal component of the
imposed magnetic field, but is parallel to it at midlevel. On the vertical field branch the
accompanying mean flow is retrograde (opposite to the net mean flow) at the top and
bottom, but prograde at midlevel, while on the horizontal field branch it is prograde
everywhere. When ζ depends on z the largest mean fields and velocities develop in
regions of smallest ζ as illustrated in figure 21(c). In the case of parallel rolls on the
vertical branch the mean field that develops is in the y-direction and is antisymmetric
with respect to midlevel, in contrast to the perpendicular case. However, the largest
mean fields are still produced near the top and bottom boundaries, while the mean
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Figure 21 (a–c). For caption see facing page.
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Figure 21. Vertical profiles of the mean horizontal magnetic field B⊥(Z)
t

and velocity U⊥(Z)
t

generated by left-travelling waves in a tilted magnetic field for several values of Ra. (a) Perpendicular
rolls on the vertical branch when ϑ = π/18, (b) perpendicular rolls on the horizontal branch when
ϑ = π/4, (c) perpendicular rolls with variable ζ when ϑ = π/4, and (d) parallel rolls when ϑ = π/4.
The remaining parameters are as in figure 20.
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Figure 22. The maximum values of the time-averaged (a) mean horizontal magnetic field Bx(Z)
t
,

and (b) mean horizontal flow Ux(Z)
t

generated by left-travelling waves in the perpendicular case,
as a function of Ra. From top to bottom ϑ = 0, 10◦, 20◦, 30◦, 32◦, 45◦.

flow still peaks at midlevel and is predominantly prograde. We do not show the
corresponding AC components for standing waves.

Figure 22 shows the maximum value of |Bt⊥| and |U t

⊥| as a function of Ra for left-
travelling waves in the perpendicular case. In the vertical regime (ϑ < 30◦) maximal
field generation occurs at θ ∼ 20◦ but the horizontal flow peaks when ϑ = 0, i.e. for
vertical imposed field. This is a manifestation of increasing decorrelation between the
velocity and magnetic field with increasing ϑ, as measured by the mixed stress tensor
from which the mean flows are determined.

The preceding results suggest that the generation of mean flows by oscillatory
convection is a surface phenomenon. Note, however, that no mean flows are generated
by steady convection in the present asymptotic limit, although such flows are known
to accompany tilted convection cells of the type studied by Matthews et al. (1993).
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8. Discussion

In this paper we have investigated in detail the transport properties of fully
nonlinear convection in an inclined strong magnetic field. For moderate values of
the tilt angle of the field the scale of the convection cells transverse to the field is
small and this fact allows one to set up an asymptotic treatment in inverse powers of
Q. This treatment in turn leads to the formulation of the problem as an eigenvalue
problem for the Nusselt number (and oscillation frequency in the case of overstable
convection). In the overstable regime the solutions of this problem revealed two types
of dynamical behaviour in the nonlinear regime. The first regime, called here the
‘vertical’ regime, is characterized by a monotonically increasing Nusselt number and
a broad isothermal interior flanked by narrow thermal boundary layers at the top
and bottom, at least for sufficiently supercritical Rayleigh numbers. This regime is
found in both steady and oscillatory convection unless the inclination of the field to
the vertical is too large.

For large inclinations we have found in the overstable regime an unexpected
hysteretic transition to a new regime which we have called the ‘horizontal’ regime.
In this regime the Nusselt number no longer increases with the applied Rayleigh
number, and may even decrease. This state is characterized by a modest isothermal
core flanked by broad stagnant magnetic boundary layers at the top and bottom. We
have argued that in this regime the energy input is stored in the deformation of the
magnetic field instead of being transported convectively and supported this conclusion
by additional diagnostics. We anticipate that in the full equations the Nusselt number
in the horizontal regime will eventually start to increase with the applied Rayleigh
number, probably as Ra1/3, instead of the Ra lnRa behaviour characteristic of the
vertical regime in the scaling explored here.

This novel convection regime persists for all O(Q1/4) wavenumbers, and does not
depend on fixing k0⊥, as in most of the results reported in this paper, or fixing k0,
although in the latter case no amount of tilt will produce this regime if the Rayleigh
number is insufficiently large. We believe therefore that the ‘horizontal’ convection
regime is a general feature of strongly nonlinear convection in oblique magnetic fields
that is independent of the specific scaling used here to demonstrate its presence.
Our results point to the important role played by the convection wavenumber and
hence to the importance of wavenumber selection in the nonlinear regime. A possible
approach to determining self-consistently the preferred wavenumber in this regime is
described by Murphy & Lopez (1987).

The results of this paper are obtained using an asymptotically exact set of equations
valid in the limit of large Q. As mentioned in the introduction these equations are
closely related to the mean-field Ansatz, provided that the Laplacian operator is
consistently replaced by D2, the Rayleigh number is properly related to Q and the
notion of averaging is extended, for time-periodic states, to averaging over time as
well. The asymptotic procedure used here establishes that under these additional
conditions the mean-field Ansatz provides an approximation to the correct behaviour
that becomes more and more accurate as Q becomes larger and larger. Although
this approach does not permit us to study the general stability properties of the
solutions we used, wherever possible, standard exchange of stability arguments to
infer the stability of the various solution branches. Elsewhere we have argued (Julien
et al. 1999a) that we expect the strong magnetic field to keep any unstable solutions
close to the inclined solutions we have constructed and as a result expect our
solutions to provide a good description of the mean state of the system even if that
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is turbulent. Julien & Knobloch (1998) provide evidence that this is so for strongly
nonlinear convection on an f-plane. In a future paper we will report on the results
of direct numerical simulations of two-dimensional magnetoconvection in a tilted
field, focusing on the horizontal field regime identified here for comparison with the
asymptotic theory.

It is tempting to speculate about the possible role of the fully nonlinear solutions
discovered here in the structure of a sunspot. Sunspots consist of a dark central region,
the umbra, surrounded by a non-axisymmetric filamentary penumbra. The penumbra
is characterized by radial striations of alternating bright and dark filaments. The
reason for the sudden transition between the umbra and the penumbra is poorly
understood – but the nonlinear results discussed above suggest a possible mechanism.
Observations have shown (e.g. Title et al. 1992) that the magnetic field strength does
not change significantly across the spot, but that the tilt angle does vary significantly.
In the sunspot umbra the tilt of the magnetic field increases with the distance from
the centre, reaching 45◦ at the umbra–penumbra boundary (Thomas & Weiss 1992)
and 70◦ at the edge of the spot.

Danielson (1961) in his study of tilted magnetoconvection speculated that a gradual
change in tilt angle would lead to a change in the nature of convection from three-
dimensional to two-dimensional but did not explain why the transition should be so
abrupt. The results described in this paper suggest a possible scenario. For small tilt
angles the system shows little preference between parallel and perpendicular rolls and
the convection is expected to be fully three-dimensional. (For vertical magnetic fields
the results of Clune & Knobloch (1993) indicate that, in the weakly nonlinear regime,
three-dimensional structures are preferred at large Q if the onset of convection is
oscillatory.) Moreover, both parallel and perpendicular rolls remain on the vertical
field branch as the tilt angle is increased (at fixed supercritical Ra) and both transport
energy efficiently. We have seen, however, that there is a critical tilt angle ϑc at
which there is a saddle-node bifurcation beyond which the system settles onto the
horizontal field branch. Although such a saddle-node bifurcation is present for both
perpendicular and parallel rolls it is encountered first for the perpendicular rolls as
ϑ (or, equivalently, the radial distance from the spot centre) increases. As described
above, the convection on the horizontal field branch is very inefficient and for ϑ > ϑc
the Nusselt number drops to small values. This argument suggests that for ϑ > ϑc
heat will be transported only by parallel (i.e. radial) rolls which continue to be efficient
transporters of heat; we suppose these to be in the form of standing waves.

This argument provides a natural and promising explanation for the observed sharp
transition from three-dimensional to two-dimensional radial structures observed in
sunspots, as discussed further elsewhere (Julien et al. 1999b), and has much in common
with the sunspot model put forward by Rucklidge et al. (1995). In particular both
explanations rely on saddle-node bifurcations present in a fully nonlinear model
to explain the abrupt nature of the umbra–penumbra transition. Since the theory
presented here is an asymptotic one valid only in the limit of large Q it is important
to verify that the phenomena described here persist for finite Q in direct numerical
simulations. We believe that our results provide an excellent motivation for pursuing
such calculations.

This work was supported by NASA under SR&T grant NAG5-4918 (KJ), the
Department of Energy under Grant No. DE-FG03-95ER-25251 (EK) and NASA
under SPTP grant NAG5-2256 (SMT). The authors would like to thank Alastair
Rucklidge and Nigel Weiss for helpful discussions.
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Appendix. The nonlinear terms in the streamfunction representation
In the streamfunction representation the nonlinear terms appearing in equations

(2.9)–(2.13),

Nφ(φ, ψ) ≡ (ω · ∇)w − (u · ∇)ω3, (A 1)

Mφ(A,B) ≡ (j · ∇)b3 − (b · ∇)j3, (A 2)

Nψ(φ, ψ) ≡ ẑ · ∇× ∇× (ω × u), (A 3)

Mψ(A,B) ≡ ẑ · ∇× ∇× (j × b), (A 4)

NT (φ, ψ, T ) ≡ u · ∇T , (A 5)

MA(φ, ψ, A, B) ≡ ẑ · ∇× ∇× (u× b), (A 6)

MB(φ, ψ, A, B) ≡ (b · ∇)w − (u · ∇)b3, (A 7)

take the form

Nφ = −J[φ,∇2
⊥φ]− J[∇2ψ,∇2

⊥ψ] + ∇⊥(∇2
⊥φ) · ∇⊥(∂zψ)

−∇⊥(∂zφ) · ∇⊥(∇2
⊥ψ)− ∇2

⊥ψ∇2
⊥(∂zφ) + ∇2

⊥φ∇2
⊥(∂zψ), (A 8)

Mφ = −J[A,∇2
⊥A]− J[∇2B,∇2

⊥B] + ∇⊥(∇2
⊥A) · ∇⊥(∂zB)

−∇⊥(∂zA) · ∇⊥(∇2
⊥B)− ∇2

⊥B∇2
⊥(∂zA) + ∇2

⊥A∇2
⊥(∂zB), (A 9)

Nψ = −∇2
{

J[φ,∇2ψ] + J[∂zφ, ∂zψ]− ∇⊥φ · ∇⊥(∂zφ)− ∇⊥(∂zψ) · ∇⊥(∇2ψ)
}

−∂z{J[∂zψ,∇2φ]− J[φ,∇2∂zψ]− 2J[∂zφ,∇2ψ] + ∇⊥φ · ∇⊥(∇2φ)

+∇⊥(∂zψ) · ∇⊥(∇2∂zψ) + ∇2
⊥ψ∇2(∇2

⊥ψ) + |∇⊥(∂zφ)|2
+|∇⊥(∇2ψ)|2 + (∇2

⊥φ)2}, (A 10)

Mψ = −∇2{J[A,∇2B] + J[∂zA, ∂zB]− ∇⊥A · ∇⊥(∂zA)− ∇⊥(∂zB) · ∇⊥(∇2B)}
−∂z{J[∂zB,∇2A]− J[A,∇2∂zB]− 2J[∂zA,∇2B] + ∇⊥A · ∇⊥(∇2A)

+∇⊥(∂zB) · ∇⊥(∇2∂zB) + ∇2
⊥B∇2(∇2

⊥B) + |∇⊥(∂zA)|2
+|∇⊥(∇2B)|2 + (∇2

⊥A)2}, (A 11)

NT = −J[φ,T ] + ∇⊥∂zψ · ∇⊥T − ∇2
⊥ψ∂zT , (A 12)

MA = ∇2{J[A,φ] + J[∂zB, ∂zψ] + ∇⊥A · ∇⊥(∂zψ)− ∇⊥φ · ∇⊥(∂zB)}
+∂z{J[φ, ∂zA]− J[A, ∂zφ] + J[∂zψ,∇2B]− J[∂zB,∇2ψ] + ∇2

⊥B∇2
⊥φ− ∇2

⊥ψ∇2
⊥A

+∇⊥φ · ∇⊥(∇2B)− ∇⊥A · ∇⊥(∇2ψ)

−∇⊥(∂zψ) · ∇⊥(∂zA) + ∇⊥(∂zB) · ∇⊥(∂zφ)}, (A 13)

MB = −J[φ,∇2
⊥B] + J[A,∇2

⊥ψ] + ∇⊥(∂zψ) · ∇⊥(∇2
⊥B)

−∇⊥(∂zB) · ∇⊥(∇2
⊥ψ)− ∇2

⊥ψ ∇2
⊥(∂zB) + ∇2

⊥B ∇2
⊥(∂zψ), (A 14)

with the horizontal Jacobian operator J[·, ·] ≡ ∂x · ∂y ·−∂y · ∂x·.
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